

挽救生命的度量工具

(一款獨特的非侵入性,自動追蹤每博)輸出,即時血流動力學顯示器

改變您思考與

即刻顯示明確的狀況

USCOM獨特非侵入性血流動力學監測方法是完全以安全、無痛、有效率的方法來測量心臟功能。USCOM監視器讓醫生和護士能快速且準確地評估病患血液動力狀況, 將疾病分類為心因性或血管性異常,並監測病患對治療的反應。

USCOM監示器採用精密、即時訊號處理的先進連續都普勒超音波技術和直觀的操作者界面。USCOM是提供準確測量心臟血流的新型非侵入性的解決方案。

配備血流追踪一全自動追蹤血流曲線

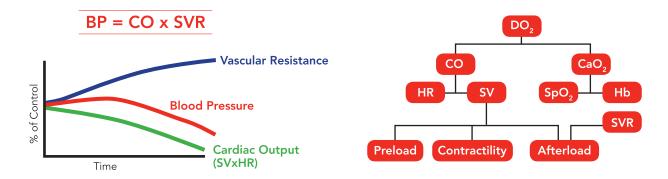
- ●即時顯示每一心博
- ●單觸式測量記錄
- 先進的趨勢分析功能
- 手動控制功能
- 快速為病人評估和治療
- 圖形和數位資料儲存
- ●可計算SVR
- ●使用OXYCOM軟體可直接計算DO2和SpO2

降低風險 • 減少成本 • 提高醫療品質

USCOM監視器是安全的

和侵入性的方法不同,USCOM不需接觸到人體血液,沒有相關感染或併發症的風險存在。可隨時執行檢查,對病患無任何危險性。它不需要鎮定劑或麻醉劑,因此適用於所有病患,並減少藥物的使用和伴隨的併發症發生。

在緊急情況下快速識別血流動力是有幫助的


不管是事故現場或運送途中,USCOM提供了臨床醫生和護理人員重要的血液流動力學訊息,可以快速診斷並做有效的治療。USCOM也可以 幫助避免使用有禁忌的治療方法,這可以使病患免除不必要的創傷和風險。

治療的方式

血液動力學管理的邏輯方法

為了維持正常的血壓(BP),因應心輸出量(CO)下降,自主神經系統會增加全身血管阻力(SVR),反之亦然。在代償狀態下,血壓可維持正常,但在去代謝狀態下,因SVR無法處理失效的循環,所以BP開始下降。了解每博心輸出量可以早期發現並快速介入治療。

循環管理=最佳化每博輸出量

每博輸出量復甦

在了解病人的治療反應監測每博輸出量(SV)是特別有效的。液體優化可以簡單,安全地引導。在液體復 甦時,SV增加通常代表低血容量狀態,SV減少是高血容量狀態,而SV不變代表正常血容量或前負荷已優 化。監控SV同樣能有效管理收縮,後負荷和氧氣輸送量。

OXYCOM

循環系統治療的目的是優化氧氣輸送到細胞中。要做到這一點,可增加血氧飽和度Sp02或CO。使用脈搏血氧計,並輸入血紅蛋白(Hb)值,USCOM自動依每博運算DO2(需要選用OXYCOM)。

定量訊息,以指

案例研究

以CVP和USCOM測量液體治療的反應

DR ROBERT BILKOVSKI

美國密西根州底特律亨利福特醫院急診醫學部

說明

82歲男性

感染性休克、低血壓、心跳過快、肺炎感染。 使用血管收縮劑:去甲腎上腺素 norepinephrine (0.5mcg/min) 和新辛弗林 neosynephrine (200mcg/min)

觀察

基線觀察

HR = 139bpm, BP = 71/38mmHg (MAP = 45 mmHg) and CVP = 13 mmHg.

USCON

HR = 136bpm, $SV = 22cm^3$, CO = 3.01/min, $CI = 1.61/min/m^2$, SVR = 853.

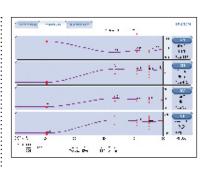
治療

因低CO、CI和SV,心跳快和低血壓,在20分鐘內,病人注入25gm的白蛋白。

灌注後觀察

HR = 117bpm, BP = 109/56mmHg (MAP = 76mmHg) and CVP = 13mmHg (unchanged).

LISCOM


HR = 115 bpm, $SV = 36 cm^3$, CO = 4.3 l/min, $Cl = 2.3 l/min/m^2$, SVR = 1141.

討論

以CVP導向的血液優化目標是 >12mmHg,在達到13mmHg時停止, 顯示不需再進行液體灌注。但基線 CO、CI、CV及BP均未適當顯示仍需液 體。灌注後CVP在13mmHg並未改變,但 USCOM的客觀血流測量明顯增加,SV增 加63%,但CO增加43%。

結論

USCOM證實SV明顯有儲量,而SV液體反應未能從侵入性CVP血液動力目標中偵察出來。

晑 1

USCOM的趨勢螢幕顯示基線測量值(左邊) ,HR下降,和增加CO,SV,CI。(右邊) 是輸液後數值。這可以協助說明用中心靜 脈壓,評估血管內體積是受侷限的。

有創血壓測量提供粗糙的循環 近似物。USCOM即時監測,SV 和HR在停止和治療時的相互作 用,使觀察得以適度優化。

案例研究

快速確定高心輸出狀態的正確治療, 可達成較快的病患恢復。

ASSOCIATE PROFESSOR BRENDAN E. SMITH

查爾斯特大學生物醫學科學學院,麻醉及深切治療,巴瑟斯特醫院,巴瑟斯特,新南威爾斯,澳大利亞專家。

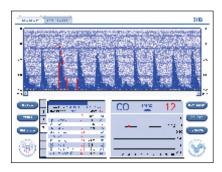
說明

24歲女性58公斤。在此之前健康狀況 良好。只有藥物是口服避孕藥。因" 崩潰"以救護車送進醫院。

觀察

基本觀察

病人呈現混亂、缺少病史


GCS 5-6.BP 73/42,脈搏80,溫度38.3。氧氣 sats 92% 於41/min 02。

呼吸頻率26/min。滿身是汗。右小腿和腳明顯 腫脹。

初步診斷

右路的DVT與肺栓塞。CXR無明顯異常。ECG竇 性節律。

USCOM基線

昌

高C0121/min和低阻力424 d s cm-5

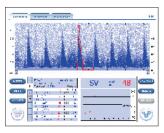
鑑別診斷

進一步臨床檢查發現右大腿上方內側有8X5公分蜂窩性組織炎,內有一小塊缺血區域,右側腹股溝出現淋巴結腫大,傷口抹片確認為鏈球菌感染,血液培養也發現相同有機體。

介入

患者以升壓藥物成功治癒。

探討


USCOM允許敗血病快速鑑別診斷,從 而病人獲得正確的治療和更快速完 全康復。

案例研究

被動舉腿,以確認患者是否會對液體 刺激或治療有反應。

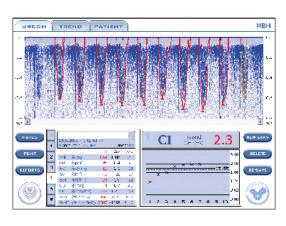
油示

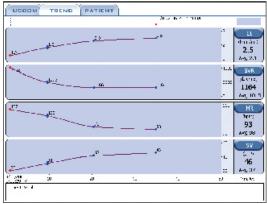
90歲的女性,在ICU後心肌梗塞。病人SV似乎有點低,可能是"dry",不知道她是否不足或過載?

被動抬腿測試前 USCOM SV=48CM3。

被動抬腿測試後 USCOM SV=58CM3。

旨導治療


USCOM產品特點:


- 非侵入性,安全性和耐受性高
- 即時左右心輸出
- 自新生兒至老年人均適用,可測所有年紀及各種不同心輸出量
- 堅固且方便運送
- 快速設置,無需校準
- 綜合趨勢分析功能
- 病人報告和數據輸出功能
- 直觀的觸控螢幕操作界面
- 電池可供兩小時使用
- 40GB硬碟的病人檔案儲存
- 可以由醫生,護士和助理操作

簡易運用於目標導向治療

- ●流體最佳化
- ●監測和滴定藥物治療
- ●敗血性休克管理
- ●敏捷的心肺復甦

每次心跳數據顯示參數,包括:

Cardiac Output 心臟輸出量 CO (l/min) CI (l/min/m²) Cardiac Index 心臟輸出指數 Stroke Volume 每搏心輸出量 **SV** (cm³) SVI (mls/m²) Stroke Volume Index 每搏心輸出量指數 **SVV** (%) Stroke Volume Variability 脈搏變異輸出量 HR (bpm) Heart Rate 心跳速率 SVR (ds cm⁻⁵) Systemic Vascular Resistance 外周血管阻力

SVRI (ds cm⁻⁵m²) Systemic Vascular Resistance Index

外周血管阻力指數 Cardiac Power 心臟功率,每分功 CPO (Watts)

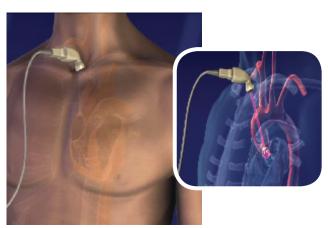
Stroke Work 每博功 SW (mJ)

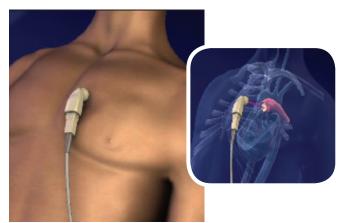
DO₂ (ml/min) Oxygen Delivery* 氫輸送量 SpO₂ (%) 血氧飽和度 Oxygen Saturation* SVS (cm³) Stroke Volume Saturation* 每搏氧飽和濃度 MD (m/min) Minute Distance 分鐘距離 Vpk (m/s) Peak Velocity of Flow 峰值流動速度 vti (cm) Velocity Time Integral 時間速度積分 平均壓力梯度 Pmn: (mmHg) Mean Pressure Gradient ET% (%) Ejection Time Percentage 血液射出時間百分比 FT (ms) Flow Time 血流時間 Flow Time Corrected 流動時間校正 FTc (ms)

附註: (*)項目需使用OXYCOM軟體才可有此功能

獨特之處:

USCOM非侵入性方法是獨一無二的。在此之前,寶貴的血流動力學訊息,只能通過侵入性的方式— 很少適合兒童,且成人使用已逐漸下降。但USCOM已驗證能廣泛使用於新生兒、嬰兒、兒童和成人的心臟輸出



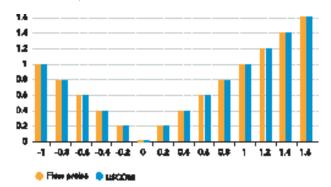

"USCOM是唯一真正的 集確, 非侵入性設備"

心血管麻醉科,亞利桑那大學醫學院教授和主任

通過驗證的非侵入性方法

使用USCOM超音波血液動力監測儀測量左心輸出,需將非侵入性的小都普勒探頭放在胸骨上窩,直接往下朝上升主動脈的縱向軸線和主動脈瓣。肺動脈或右心輸出的測量是從肋朝向肺動脈瓣。

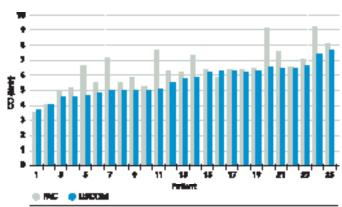
左心入徑 右心入徑

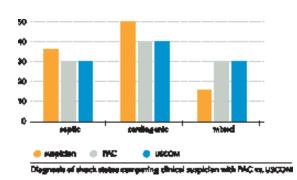

藉由USCOM的音束技術,探頭發射廣泛連續都普勒超音波訊號,計算血流射出主動脈瓣和肺動脈瓣的速度。即時自動血流追蹤,提供定量每博輸出的血液動力資訊

被證明是準確的

USCOM監視器經由五個階段的驗證,過去的證據顯示連續都譜勒波的準確性和可靠性。USCOM於獨立的體外實驗、動物實驗和人體臨床試驗比較流量探測器、菲克和臨床"黃金標準"肺動脈導管 (PAC)。明確證實USCOM測量血流的準確性。

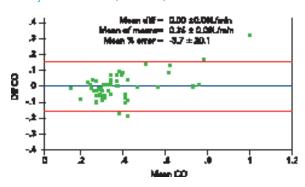
在精確的流量探針測試。USCOM裝置測得的流速從-1到 1.6米/每秒,完全與模擬器一致。


MecaBio - Ecole Superieure de Mecanique de Marseille. I.M.T.- Technople de Chateau Gombert, Marseille, France.

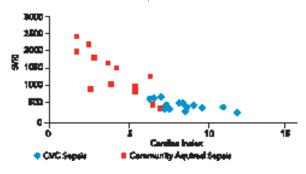

"USCOM在測量危重症患者CO是可信賴的方法,非侵入性 USCOM可區隔ICU病患的不同型態休克,提供適當的數據。"

L.E.M. HAAS

Dept of ICU, Geldersee Vallei Hospital, Ede, The Netherlands

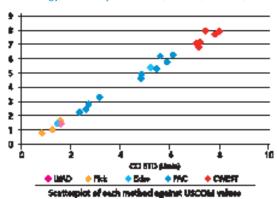

Contine Output in Individual patients exemparing IMC vs.USCOM

這些結果表明,USCOM測量新生兒心臟輸出與傳統超音波一樣準確,甚至對血液動力變化更敏感。


R. PHILLIPS

University of Queensland, Brisbane, Australia

"抗液體敗血性休克依不同病因會呈現不同的血液動力型態。本研究與此吻合表示嚴重敗血的心血管反應較受當前臨床情況影響,而非全部一樣。"


DR J. BRIERLEY
PICU, Great Ormond St Hospital, London, UK

"以一般方式測得平均CO的散點圖與USCOM比較顯示很好的線性一致性,與任一特定方法無明顯的差異。"

P. LICHTENTHAL

Anesthesiology, University of Arizona, Tucson, Arizona, USA

產品規格

模組	USCOM 1A
方法	連續波都普勒超音波技術
顯示螢幕	12.1吋TFT薄膜電晶體液晶顯示器
介面接口	電阻式觸控螢幕
CPU	X86相容的中央處理器
作業系統	Windows CE .NET
儲存容量	可超過50萬個測試
傳感器頻率	2. 2MH
傳感器尺寸	12mm直徑
多普勒血流追蹤	全自動
電池	快速充電、可使用2小時
電源	醫療級通用絕緣電壓
規格	310mm*350mm*180mm(高度*寬度*厚度)
重量	5公斤/11磅
結構	塑料壓模與金屬材料
圖形化用戶介面	Web協定
通訊	串接序列接口介面,USB,乙太網路
用戶介面	多國語言

"一台能挽救 很多生命的機器"

副教授 BRENDAN SMITH

查爾斯特大學生物醫學科學,巴瑟斯特醫院

Suite 1, Level 7, 10 Loftus Street Sydney NSW 2000 Australia T +612 9247 4144 F+612 9247 8157

E uscom@uscom.com.au